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Abstract
Medhurst's semi-empirical formula for the self-capacitance of a single-layer solenoid inductor is 
derived from low and high-frequency limiting behaviour except for an approximately frequency-
independent shape factor.  The expression is further improved by the inclusion of a 1/Cos²ψ factor 
(where ψ is the pitch angle), which accounts for a neglected second-order relationship between self-
capacitance and the number of turns.  The 1/Cos²ψ dependence is consistent with experimental data, 
whereas formulae based on the inter-turn capacitance are radically in error.
     Medhurst gathered data for coils wound on solid polystyrene rods and analysed it on the basis 
that the coil former dielectric makes no difference to the self-capacitance.  We presume that he did 
so because data for long thin coils converges to an asymptotic formula which depends only on 
external permittivity.  By consideration of boundary conditions relating to an electromagnetic wave 
propagating along the helix, we deduce an expression which reconciles Medhurst's data with 
supplementary data for air-cored coils.
     The lumped-component model for an inductor only works insofar as the curve of apparent 
inductance vs. frequency given by:
L' = ( XL // XCL ) / 2πf
corresponds to the apparent inductance of a dispersive short-circuited transmission line given by:
L' = (R0/2πf) Tan(2πf ℓTL / vp)
Where R0 is the characteristic resistance, ℓTL is the equivalent line length, and vp is a phase velocity. 
The dispersive property of the line is effected by allowing both vp and R0 to vary with frequency. 
     Solutions for R0 and vp, in Bessel functions, have been given by Schelkunoff for the Ollendorf 
sheath-helix model and are well known.  This model however is best related to infinitely long 
filamentary helices, and provides only an approximate description for practical round-wire coils. 
We can however use it to deduce the circumstances under which the lumped-component theory 
breaks down.  The situation is that, at very low frequencies, the superposition of an axial slow wave 
and a wave following the helix results in a helical phase velocity several times the speed of light.  In 
this region however, the transmission-line equation asymptotes to the approximation Tanθ=θ, and 
the relationship between R0 and vp is fixed from purely magnetic considerations.  At intermediate 
frequencies, vp decreases smoothly in such a manner as to cause a reasonable match between the 
transmission-line model and the lumped component model.  As the SRF is approached however, the 
scattering cross-section of the coil increases dramatically and the helix propagation mode comes to 
dominate the superposition.  This forces vp to become close to c, causing the SRF to occur when the 
length of the wire in the coil is about λ0/2.  The change in behaviour gives rise to a kink in the L' 
curve and a corresponding deviation from lumped-element theory; the effect being most noticeable 
in short coils.  Ultimately, the apparent self-capacitance of an inductor is decided by the range over 
which the two expressions for L' agree.  The kink, combined with lesser differences of curvature at 
lower frequencies, implies that self-capacitance is not an accurate predictor of the SRF.

http://www.g3ynh.info/
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Glossary

// = parallel impedance operator, defined such that: a//b=ab/(a+b)

ε = ε0 εr = electric permittivity
ε0 = 1/(μ0 c²) = 8.854187818 pF/m = permittivity of free space
εr  = relative permittivity (dielectric constant in the lossless approximation).
εrf = dielectric constant of coil-former material.
εri  = relative permittivity inside the solenoid
εrx = relative permittivity outside the solenoid
λ = v / f  = wavelength in the surrounding medium
λ0 = c / f  = wavelength in free space
μ = μ0 μr  =  magnetic permeability
μ0 = 400π nH/m = permeability of free space
μr  = relative permeability (neglecting losses)
χ²/ν = reduced chi-squared = variance of an observation of unit weight.
ψ = Arctan[p/(2πr)]  = pitch angle

c = 1/√(μ0 ε0) = 299 792 458 m/s = Speed of light
Cee = End-effect capacitance
CL = Self-capacitance 
D = Effective diameter of solenoid (D<Da)
DAE = "Doubly asymptotic, empirically corrected"
d = wire diameter
Da = Average diameter of solenoid (measured from middle of wire)
f  = frequency
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f0 = resonant frequency
f0s = self-resonant frequency (SRF)
GDO = Grid-dip oscillator
h = height
kc = capacitance correction coefficient
kE = electric correction factor
kH = Generalised magnetic field inhomogeneity coefficient
kL = Nagaoka's coefficient (current-sheet field inhomogeneity coeff.)
L = Low-frequency inductance
L' = XL'/(2πf) = Apparent inductance
ℓ = Np = Length (or height) of solenoid.
ℓw = 2πrN / Cosψ  =  Wire (or conductor) length
N = Number of turns
n = refractive index
1/nax = axial velocity factor
1/nhx = helical velocity factor
p = pitch distance
Q = XL' / Rac 
r = Effective radius of solenoid (r<ra)
R0 = Characteristic resistance of transmission line
ra = Average radius of solenoid (measured to middle of wire)
ri = inside radius of tubular coil-former
ro = outside radius of coil-former
Rac = AC resistance
SRF = Self-resonance frequency
v = apparent propagation velocity (in medium. v=c in vacuo)
vp = phase velocity
w = relative wall thickness
XCL = -1/(2πfCL) = reactance attributable to self-capacitance 
XL = 2πfL = Inductive reactance 
XL' = 2πfL' = Measured reactance
Z0 = √(μ0/ε0) = 376.7303134 Ω = Impedance of free space
Z0/2π = 59.9584916 Ω , not 60.
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1. Introduction
Of pure resistance, capacitance and inductance, the latter is the least amenable to realisation in 
practical devices.  The reason is that the lumped-component theory depends on the assumption that 
every physical dimension is negligible in comparison to the wavelength of the incident radiation.  In 
a wound inductor, the problematic dimension is the length of the piece of wire used to make it. 
That wire may be coiled-up in a tiny volume, but its electrical length at radio frequencies cannot be 
ignored.
     When a solenoid coil is operated in the regime where wire length is negligible in comparison to 
wavelength, its inductance can be calculated with phenomenal accuracy from magnetic 
considerations alone.  A straightforward basis for so doing is the hypothetical current-sheet inductor 
which, with corrections for realistic wire, allows inductance to be determined from physical 
parameters to better than one part per thousand1.  Magnetic theory must, of course, be respected in 
the asymptotic behaviour of any hypothesis which purports to describe inductors at high 
frequencies, and this has been a weakness in some of the more influential studies.  It is one thing to 
say that a theory of wave propagation in coils reverts to the lumped theory at low frequencies, but 
another to ensure that it actually does.
     At audio and low-radio frequencies, the situation is complicated by the onset of the skin effect, 
and its companion, the proximity effect.  The internal impedance of isolated wires is however a 
solved problem2; and the proximity effect, albeit more difficult to quantify, is nevertheless 
susceptible to attack3 4.  We may also note that the current redistribution which affects external 
inductance is constrained by boundary conditions on Maxwell's equations; i.e., the loop radius is 
always determined to a point which lies within the body of the conductor.  Hence, with a little 
empiricism, we can push the inductor model into the radio-frequency range and still obtain 
respectable accuracy.  More relevant to the present discussion however, we can envisage the 
existence of data corrected for minor non-idealities, which frees us from distractions when looking 
to higher frequencies still.
     As the lumped component theory would have it: corrected for strays and losses (and better-still 
also corrected for the effects of non-uniform current distribution within the wire); the reactance of a 
coil looks like the reactance of a pure inductance in parallel with a capacitance.  There is even a 
school of thought which says that the self-capacitance is due to the capacitance between adjacent 
turns; and although this is partly true for multi-layer coils, the hypothesis turns out to be a hopeless 
predictor of the reactance of single-layer coils.  Experimentally, it transpires that self-capacitance 
increases as the spacing between turns increases, and we will shortly derive an expression which 
accounts for that phenomenon.
     Attributing self-capacitance to the static turn-to-turn electric field is a fallacy akin to taking the 
coil apart and trying to find the capacitor.  The lumped element approach also breaks down in the 
vicinity of the self-resonance frequency (SRF), a difficulty which gives rise to inaccuracies in 
circuit simulation.  The solution, of course, lies in recognising that the coil is a transmission line; 
except that the line in question turns out to be a rather complicated one.
     Even for resistors and capacitors, the lumped approximation is just a special limiting case of 
transmission line theory.  It is just that those components can generally be made small in 
comparison to wavelength; and when they do become large, the distributed parameter models 
remain fairly simple.  Not so for the inductor; where different regions of the line overlap, giving rise 
to strong interactions between competing propagation processes.

1 See, for example: Inductance Calculations: Working Formulas and Tables, F. W. Grover, 1946, 1973. Dover 
Phoenix 2004,  ISBN: 0 486 49577 9. 

2 Practical continuous functions for the internal impedance of solid cylindrical conductors. D. W. Knight. 
Available from www.g3ynh.info.

3 Practical Model and Calculation of AC resistance of Long Solenoids. E. Fraga, C Prados, and D.-X Chen. IEEE 
Transactions on Magnetics, Vol 34, No. 1. Jan 1998. 

4 Solid State Tesla Coil  . Gary L Johnson, 2001. Chapter 6. http://eece.ksu.edu/~gjohnson/  
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     If it were just a matter of replacing the expression for the reactance of a pure inductor and 
capacitor in parallel with the expression for a short-circuited conventional line, then inductor 
modelling would present no serious challenge.  Actual measurements remain anomalous when 
compared against either model however; an issue which came to this author's attention while 
investigating and attempting to predict the behaviour or broadband current transformers.
     The lumped component and the simple transmission line models agree over a fairly wide 
frequency range.  Hence there is a correspondence between self-capacitance and time delay, which 
might be exploited in the modelling of phase-sensitive circuits. In the interests of predicting self-
capacitance therefore, attention was given to the classic 1947 work of R. G. Medhurst5, which offers 
a widely used empirical formula for solenoids which can, in principle, be adapted to deal with 
toroids and other shapes. 
     It quickly became apparent that Medhurst's formula was not good enough for the task in hand.  It 
is clearly on the right track, because it gives results which are accurate within about -50 to +100%; 
but an accuracy of ±15% can easily be obtained by assuming that high-frequency waves propagate 
along the coil wire with a phase velocity equal to the speed of light (vp=c).  The latter approach 
incidentally, does not represent the general physical situation; but it works fairly well.  Instead of 
abandoning Medhurst however; a number of supplementary measurements were collected in an 
endeavour to find the source of the errors.  That investigation, outlined below, results in a new 
formula which takes pitch-angle and coil-former dielectric into account, and brings the uncertainty 
in estimating the self-capacitance of typical RF inductors to a more respectable ±2%.
     It was the business of acquiring self-capacitance data, rather than that of predicting it, which 
produced anomalies.  Measurements, for want of exotic test equipment, were made using the 
ancient but venerable resonance method of G W O Howe.  This involves resonating the test coil 
against a series of known capacitances, then fitting the data to a regression line.  If we take, for the 
purpose of illustration, the simple case where the Q is sufficiently high to permit the neglect of 
losses, the parallel resonance formula reduces to:
(2πf0)² = 1/[ L (CL+Cref) ]
Where CL is the self-capacitance, and Cref is the added parallel capacitance including all strays. 
Rearranging gives:
Cref = -CL + 1/ [ (2πf0)² L ]
which, insofar as the lumped component theory is valid, is a straight-line graph of the form y=a+xb. 
Hence, if 1/(2πf0)² is chosen as x, a linear regression procedure returns the slope 1/L and the y-axis 
intercept -CL . 
     Medhurst's measurements were made using a variant of Howe's method, but there is no 
functional difference.  For a given test coil, he acquired data using reference capacitances 
considerably greater than CL .  This amounts to shooting at the graph intercept from a distance; and 
although the measurements were performed with great care, the limited perspective removes all 
knowledge of possible deviations from the model.  To put the matter in its proper historical context 
however; in 1947 engineers were inclined to believe in the lumped component theory, rather than 
see it as a mathematical convenience, in which case the approach was perfectly reasonable.
     For the measurements made by this author, the decision was made to take data over a wide 
frequency range: generally at least three and sometimes as many as six octaves for each test coil. 
Also, a method was developed using a set of pre-calibrated plug-in mica reference capacitors, and a 
jig with a stray capacitance of only 0.73pF.  This meant that, for most of the coils, measurements at 
the high end of the frequency range involved external capacitances considerably less than CL . The 
results turned out to have both explicable and, initially, inexplicable deviations from linearity.
     One obvious feature of all of the datasets covering sufficient range was the dispersion due to 
skin and proximity effects.  This however could be corrected-out using techniques described in 

5 H. F. Resistance and Self-Capacitance of Single-Layer Solenoids. R G Medhurst (GEC Research Labs.). Wireless 
Engineer, Feb. 1947 p35-43, Mar. 1947 p80-92. Corresp. June 1947 p185, Sept. 1947 p281.
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another article6.  Hence, in the discussion to follow, we will concern ourselves only with what 
remains after that correction.
     If the coil behaves as a conventional short-circuited transmission line, we should see a low 
frequency agreement between the data and the lumped component model, a disagreement at 
intermediate frequencies, and a reconvening as the frequency approaches the SRF.  In experiments 
however, what was seen was an agreement over a surprisingly wide range, with a sudden deviation 
on approaching the SRF.  If, for the sake of argument, we say that the inductance is constant, then it 
appears that the self-capacitance starts to decline when the external capacitance is reduced to the 
point where it becomes comparable to the self-capacitance.
     One difficulty with this behaviour is that it looks like an artefact.  Specifically, it looks like a 
calibration problem associated with the jig strays and the smaller reference capacitors.  No amount 
of careful recalibration would make it go away however; and so for some time the only viable 
solution was to exclude the deviant data from the analysis by setting their fitting weights to zero. 
Still thinking that it was a systematic error, this led the author to devise a method for measuring the 
SRF of coils without using a test jig.
     The solution to the troublesome 'calibration' issue (which never existed) was to scatter radiation 
from isolated coils and detect the resultant field using a small loop or an electrometer dipole 
connected to an oscilloscope.  A giant version of the experiment devised for public demonstration is 
shown in the photograph below.  In that case the generator is an HF radio transmitter modified to 
give continuous coverage, and the induction and pick-up coils are 2-turn loops of about 90mm 
diameter made from stiff wire.  Note that the generator passes current through the induction loop to 
a coaxial load resistor; the point being to maintain a reasonable impedance match and thereby avoid 
provoking the transmitter's protection circuitry.  Thus, although the power delivered to the load is in 
the 2 to 10W range, the actual radiated power is somewhat less than 100μW.  The primitive high-
pass filter before the oscilloscope serves to reject mains hum.

6 Reference required for self-C measurements by DWK.
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For the demonstration shown, a large self-supporting coil of copper tubing is suspended from a 
plastic metre rule.  As we will see later, a small amount of dielectric material on the inside of the 
coil makes very little difference to the resonant behaviour; but an exclusion zone of at least 5 coil 
diameters is necessary on the outside if the experiment is to give accurate results.
     It takes several hundred microvolts at the oscilloscope input to produce a usable display, and so 
for the antenna separation shown (about 0.8m) very little is seen in the absence of a test coil.  With a 
coil in situ however; numerous scattering resonances can be detected (depending on the coil 
geometry and the available frequency coverage), some visible with the pick-up loop on axis and 
some requiring it to be moved around to the side.  By far the strongest resonance however is the 
fundamental SRF; which gives rise to an enormous increase in scattering cross-section, and a 
consequent sharp increase of about four orders of magnitude in the received signal.  Note that the 
detected signal is the superposition of incident and scattered waves, giving rise to interference 
phenomena when investigating weak resonances; but the scattering signal at the SRF is so great that 
there is no ambiguity in finding the centre of the peak.
     Which brings us to the main observation, which is that the SRF occurs when the total length of 
wire is very close to half the free-space wavelength, just as it does with a wire antenna. The data for 
the big demonstration coil serve to illustrate the point:

Solenoid length:
Average diameter :

Number of turns:
Wire (tubing) diameter:

Winding pitch:
Pitch to wire diam. ratio:

Conductor length:
SRF:

Free-space half-wavelength:
Helical velocity factor:

ℓ = 152mm
Da = 96mm (= inside diameter + wire diameter)
N = 18.09
d = 5.7mm
p = ℓ / N = 8.4mm
p / d = 1.47
ℓw = √[ (π Da N)² + ℓ² ] = 5.458m
f0s = 26.92MHz
λ0/2 = c/(2f0s) = 5.631m
1/nhx = 5.458 / 5.631 = 0.97

From this, the principal resonance mechanism is clear. Waves travel along the helix and reflect from 
the impedance discontinuities which occur at the ends of the wire.  The strong scattering resonance 
at the fundamental SRF corresponds to the standing-wave pattern which builds up when a single 
round trip brings the wave back to its starting point in phase with itself.  The phase velocity 
moreover, despite interaction with the fields from adjacent turns, is not greatly different from c ; 
which implies that the wave is intimately associated with the guiding wire, at least at the SRF. Note 
however that the test coil has a pitch to wire diameter (p/d) ratio of about 1.5. In coils with more 
closely spaced turns (p/d<1.1) the helical phase velocity is somewhat greater than c at the SRF; a 
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phenomenon which is explained by theory to be discussed later. 
     More information about the nature of the travelling wave can be had by replacing the loops with 
small dipoles; with cables brought straight-out at the back and choked-off with ferrite sleeve baluns. 
With the test coil removed, and an uncluttered working area, it can be shown that there is a 
minimum in the direct signal when the two dipoles are at right-angles.  When the coil is introduced 
however, with its axis along the path between the antennas, there is no-longer a minimum when the 
dipoles are crossed, particularly on approaching and going above the SRF.  Hence an observation 
which will come as no surprise to those who work with helical antennas; which is that the coil 
converts linearly polarised radiation into circularly polarised radiation.  By sampling the electric 
field while looking along the axis, we see an advancing wave with a rotating electric vector; i.e., the 
wave in the dominant propagation mode travels along the helix with its electric vector substantially 
perpendicular to the axis.
     In truth, there is nothing particularly novel or controversial about the scattering experiment as 
described so far.  The association between self-resonance and wire length has probably been known 
since shortly after the invention of the grid-dip oscillator (GDO) in the 1920s; and there is theory 
which can account for the observed velocity factors, at least approximately.  What is of interest is 
the way in which the information sheds light on the relationship between self-capacitance and the 
transmission-line resonance.
     The scattering experiment shows, to a fair approximation, that the SRF of an air-cored solenoid 
occurs when the wire length is λ0/2.  What Medhurst's formula says however, is that the λ/2 rule 
only applies when the coil is long and thin.  Specifically, for the squat solenoids typically used in 
radio applications (ℓ/Da≈1), the self-capacitance deduced from regression analysis predicts the SRF 
at a frequency which is too low in comparison to that of the disconnected coil.  This does not imply, 
incidentally, that self capacitance is a useless conception.  It is still the appropriate modelling 
parameter for conventional parallel LC resonators, because it correctly describes the circuit 
behaviour whenever the minimum padding capacitance is greater than CL (which is usually the 
case).  When parallel resonance data are acquired over a wide frequency range however; the points 
are seen to veer away from the regression line at high frequencies as the coil 'locks-on' to the λ/2 
wire-length resonance. One clue to the origin of this attraction behaviour lies in the huge increase in 
scattering cross-section which occurs at the SRF.
     The theoretical analysis which comes closest to describing the high-frequency behaviour of 
solenoids is that given by Schelkunoff, for the Ollendorf sheath-helix. This is reproduced in J. R. 
Pierce's classic paper on the travelling-wave tube7 and elsewhere8 9 10 11.  The case considered is that 
where the circumference of the coil is small in comparison to wavelength, so that the field patterns 
are radially symmetric; i.e., for coils of many turns, it is still appropriate at frequencies well above 
the fundamental SRF.  The story is essentially that of a system which has two principal modes for 
electromagnetic propagation: one being associated with a plane wave, the 'slow-wave', travelling 
along the coil axis; the other being associated with a wave travelling along the helical conductor. 
Note that the two waves are not physically distinguishable.  The overall field pattern is given by 
their superposition.  They represent two ways in which radiation can traverse the coil, and since 
they must always remain in lock-step, the ratio of their phase velocities is given by the ratio of the 
7 Theory of the Beam-Type Traveling-Wave Tube. J R Pierce. Proc. IRE. Feb. 1947. p111-123. See Appendix B, 

p121-123, "Propagation of a wave along a helix", which gives Schelkunoff's derivation of propagation parameters 
for the Ollendorf sheath-helix. 

8 RF Coils, Helical Resonators and Voltage Magnification by Coherent Spatial Modes, K L and J F Corum, 
Microwave Review, Sept 2001 p36-45. 

9 Multiple Resonances in RF Coils and the Failure of Lumped Inductance Models. K L Corum, P V Pesavento, J 
F Corum. 6th International Tesla Symposium 2006. 

10 Fields and Waves in Communication Electronics.  S Ramo, J R Whinnery and T Van Duzer. Wiley 1994. ISBN 0-
471-58551-3. Section 9.8: The idealixed helix and other slow-wave structures.

11 Coaxial Line with Helical Inner Conductor. W Sichak. Proc. IRE. Aug. 1954. p1315-1319. Correction Feb. 1955, 
p148. 
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coil length to the conductor length. 
     Ramo et al. liken the propagation environment for the axial slow-wave to the situation within a 
disk-loaded waveguide12. The wave passes a series of slits, each of which leads to a short-circuited 
transmission-line stub, the resulting inductive loading causing a reduction in phase velocity.  The 
series of Hertzian loops let into the walls of the mis-named 'Cavity' Magnetron have an analogous 
effect13.  The additional complication in the solenoid lies in the varying relative dominance of the 
axial and helical processes.
     It was said by Michael Faraday, that for every highly mathematical theory, we should seek an 
equivalent explanation in plain words.  Be warned however, that some interpretational license is to 
be expected in the following view.  It seems that when a plane wave of low-frequency moves along 
the coil axis, is is slowed by the cylinder-wall discontinuities, but the interaction is relatively weak. 
In effect, the scattering cross-section of the coil is small, and so the retardation is not at its greatest. 
Maximum retardation only occurs at high frequencies, when the scattering cross-section is large; in 
which case the helical mode is strongly excited and, according to both theory and experiment, 
attains a limiting phase velocity of c. 
     Now, bearing in mind that the axial and helical phase velocities are linked; it follows that, at low 
frequencies, if the axial wave is not slowed by the maximum amount, then the helical phase velocity 
must be considerably greater than c.  Indeed, the sheath-helix theory predicts a limiting low-
frequency helical velocity factor of about 2.7 for widely-spaced helices.  For those unfamiliar with 
advanced optical concepts incidentally, note that a phase velocity is the apparent velocity of a 
superposition of waves; the theory does not imply the transmission of information at greater than 
the speed of light.
     All of which brings us at least to a qualitative picture of what goes on with coils:  At low 
frequencies the helical phase velocity is several times greater than c (i.e., the axial wave is 
dominant).  It declines steadily as the frequency increases, but then the rate of change diminishes as 
the limiting value is approached.  It is this cross-over from declining to constant velocity which 
gives rise to the anomalous impedance characteristic in the run-up to the SRF.  Hence the high-
frequency breakdown of the regression analysis indicates the end of a long dispersion region. 
Indeed, as demonstrated by Rhea14 15 a simple non-dispersive transmission-line model gives a fair 
description of a coil operated above its SRF.
     The difficulty which remains is that of finding an overall quantitative theory of coils.  It is often 
assumed that the sheath-helix theory is definitive because it is so successful at explaining peculiar 
phenomena.  There are a few serious caveats however, as some have found to their cost.  Here 
springs to mind the innocent phrase: "it passes to the lumped-component theory at low frequencies". 
Well sadly, no, it doesn't; not if you want numbers which are actually right.
     The sheath-helix theory is a theory of what happens in the middle region of infinitely long 
solenoids.  It lacks fringing field corrections (cf. Nagaoka's coefficient) and so can only be argued 
to pass to the lumped theory for very long coils.  Even then however, its accuracy for predicting 
inductance is only about ±15%, a limitation which must be attributed artificial constraints inherent 
in the model.  Particularly, Maxwell's equations are solved on the basis that current can only flow 
strictly in the helical direction.  The nearest physical realisation is a coil of very fine wire, or several 
fine wires in parallel laid side-by-side on a coil former16.  Hence corrections for the difference 
between the sheath helix and actual wire are needed, and these are not the same as the corrections 

12 Fields and Waves in Communication Electronics. [cited earlier] Section 9.9: Surface guiding.
13 Technical and Military Imperatives: A Radar History of World War II. Louis Brown. 1999. Taylor and Francis. 

ISBN13: 978-0-7503-0659-1. See Ch. 4. Resonant Magnetron: p153, p409. 
14 Filters and an Oscillator Using a New Solenoid Model, Randy Rhea, Applied Microwave & Wireless, Nov 2000, 

p30-42.
15 A Multimode High-Frequency Inductor Model, Randall W Rhea. Applied Microwave & Wireless, Nov/Dec 1997, 

p70-80. 
16 Fields and Waves in Communication Electronics. [cited earlier] Section 9.8.
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used with the current-sheet model.
     A theory of infinitely long coils moreover, deals only with travelling waves. Adapting it to 
describe resonant behaviour involves truncating the cylinder and (in the state of the art so far) 
ignoring the fringing fields. This approach has been highly successful in predicting the voltage 
magnification of Tesla coils17 but it does not permit exact prediction of the SRF.  A limitation of the 
sheath-helix theory is that the turn-over point for the transition from declining to nearly-constant 
phase velocity is not specifically linked to a resonant process. In practice however, since scattering 
cross-section is involved, we must expect that it should be. 
     Intriguingly, we can devise coils where the helical velocity has not reached its limiting value at 
the SRF (closely spaced turns), and coils where it has (widely-spaced turns).  This is as allowed by 
the sheath-helix theory, but not predicted because it is strictly a phenomenon associated with wires 
of finite width.  We can explain by saying that narrowing the slits in the cylinder wall reduces the 
braking applied to the axial slow-wave, and so forces-up the helical phase velocity.  It may therefore 
be possible to derive a correction, involving the pitch to wire-diameter ratio (p/d), by combining the 
sheath-helix and the disk-loaded waveguide models.
     So, overall, we have a theory of coils which is not-quite fully fledged; but as we will see, by 
evoking the occasional empirical parameter, we can still devise transmission-line equations which 
account for all of the data.  That then is the story in plain-text. Now, to take the matter further (with 
no apologies for the pun); we must engage in a little light mathematics.

2. Self Capacitance (asymptotic form)
The reactance of a coil is only strictly defined by a transmission-line model.  For purposes of circuit 
design however, we can assume that the coil behaves approximately as a lumped inductance in 
parallel with a fixed capacitance on some interval between very low frequencies and the 
fundamental SRF.  Hence the logical starting point for a general expression for self-capacitance is to 
use the electrical resonance formula as an asymptotically-correct bridge, linking the low-frequency 
inductance (derived from magnetics) to the SRF (derived from the conductor length).
     Self-resonance of the disconnected coil occurs when the length of wire used to wind it is one 
half-wavelength.  This relationship is not exact, but it is in the nature of the derivatives of the 
resonance formula for the case where the L/C ratio is very large, that a small change in capacitance 
gives a large change in f0. Hence the inverse corollary, which is that even a large uncertainty in f0 

does not greatly affect the self-capacitance; i.e., since we take it that:
2πf0s = 1/√(L CL)        . . . . . (2.1)
then:
CL = 1/[ (2πf0s)² L ]
and
∂CL / ∂f0s = -1/ [ 2π² L f0s³ ] 
If the uncertainty in CL is δCL , and the uncertainty in f0s is δf0s , then:
δCL = -δf0s / [ 2π² L f0s³ ]
This inverse-cubic relationship makes it difficult to predict the SRF accurately from the self-
capacitance, but (in principle) easy to predict the self-capacitance from the SRF.  It allows us to 
regard the effects of turn spacing and the fringing fields on wave propagation as second-order 
effects, and thereby produce first-order formulae for self capacitance.

The length of wire in a helical coil is given by:
ℓw = 2πrN / Cosψ        . . . . . (2.2)

17 See papers by the Corum brothers, cited earlier.
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where r is the effective solenoid radius, N is the number of turns, and ψ is the pitch angle.  At the 
SRF (to a first-order approximation):
ℓw = λ/2
where λ=v/f ; v being the apparent velocity of light in the surrounding medium.  v is given by:
v = 1/√(μ ε) = 1/√( μ0 μr ε0 εr )
and for a self-supporting coil in air or vacuum, λ=λ0 and:
v = c = 1/√(μ0 ε0)
Hence, at the SRF:
ℓw = 1/[ 2 f0s √(μ ε)] 
Using this in (2.2) gives:
2rN / Cosψ = 1/[ 2πf0s √(μ ε)]         . . . . . (2.3)

At this point it might seem logical to substitute for 2πf0s using (2.1), but to do so will not result in an 
equality.  This problem arises because of a hidden generalisation in eliminating f0s .  Equation (2.1) 
defines the relationship between L and CL only at the SRF, whereas we want the relationship to hold 
from DC to the SRF, and we want it to capture any changes in wave propagation which might result 
from connecting the coil to a circuit.  This implies that the self-capacitance is not strictly a constant, 
it may even change in the presence of a shunt impedance, and so it cannot be defined as a constant. 
Hence we need an additional parameter, which is as yet unquantified, but which may prove to be a 
function of coil geometry, or frequency, or load impedance, or perhaps all of those.  It is analogous 
to a relative permittivity, and so we will include it with the permittivity and permeability factors.  It 
is also analogous to Nagaoka's coefficient (the fringing magnetic field correction for the current-
sheet solenoid), and so we will call it kE (electric correction factor).  Hence, substituting (2.1) into 
(2.3) and restoring equality by including kE :
2 r N / Cosψ = √[L CL /( μ ε kE )]
Squaring both sides then gives:
4 r² N² / Cos²ψ = L CL /( μ ε kE )
Hence:
CL = μ ε 4 r² N² kE / ( L Cos²ψ )       . . . . . (2.4)

The equivalent lumped inductance of a solenoid can be written18:
L = μ π r² N² kH / ℓ                            . . . . . (2.5)
where kH is an aggregation of correction factors which is generally within 1% of Nagaoka's 
coefficient (kL), and is assumed to be equal to kL in the current sheet approximation.  Substituting 
(2.5) into (2.4) gives:

CL =
4 μ ε r² N² ℓ kE 

μ π r² N² kH Cos²ψ

i.e.;
CL = ( 4 ε / π ) ℓ ( kE / kH ) / Cos²ψ 2.6

For a self-supporting coil in air, this becomes:
CL = ( 4 ε0 / π ) ℓ ( kE / kH ) / Cos²ψ
where
4ε0/π=11.27350207 pF/m
The coefficient kE , of course, remains to be determined.

18 Solenoids.  D W Knight.  Still in HTML form at time of writing.
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3. Medhurst's formula
The most widely cited study of solenoid self-capacitance is that reported by R G Medhurst in 1947 
[reference given earlier].  The intended remit of that work however, was probably not as wide as is 
generally assumed.  Medhurst engaged in a study of the AC resistance of solenoids with a view to 
producing formulae and tables for the prediction of Q.  In order to do that, he needed to correct his 
measurements for the effect of self-capacitance, and it was his original intention to use the theory of 
A J Palermo (to be discussed in section 7) for that purpose.  Palermo gives a formula based on the 
hypothesis that the self-capacitance can be deduced by considering the capacitance between 
adjacent turns.  Medhurst, being a meticulous experimenter, soon ran into difficulties with that 
approach; and so was forced to "find out whether Palermo's formula did in fact agree with 
experiment".  He concluded that the data supporting Palermo's theory were suspect; and fell only a 
little short of accusing Palermo of scientific fraud.
     Medhurst's solution to the dearth of believable theory was to make self-capacitance 
measurements on a large number of test coils, all of which were wound on solid polystyrene rods. 
He then corrected the data for strays and fitted them to the following regression formula:

CL / D = 0.1126(ℓ/D) + 0.08 + 0.27√(D/ℓ )     [ pF / cm ] Medhurst's Formula

The first thing to notice here is that the coefficient 0.1126 is 4ε0/π in pF/cm with an error in the last 
digit as occurs when the value of c is taken to be 300M m/s (instead of 299 792 458 m/s, which is 
now the standard value).  As Medhurst stated in his paper: "The first numerical factor follows from 
Nagaoka's inductance formula for long coils and the experimental fact that the self-resonant 
wavelength for long coils equals twice the length of the winding".  In other words; he employed a 
derivation somewhat akin to that which led us to equation (2.6), but using the long current-sheet 
approximation (kL=1), and without encountering the 1/Cos²ψ factor.  The latter omission is 
understandable however, because Medhurst was aware that self-capacitance is substantially 
independent of turn-spacing provided that the coil has plenty of turns.  He therefore chose to keep 
the number of turns per unit length high to eliminate pitch effects, and thus worked in the regime 
where Cos²ψ ≈ 1.
     Medhurst's formula can, of course, be put into the form of equation (2.6), and it is instructive to 
do so.  We start by multiplying throughout by D, restoring natural constants to their proper 
identities, and converting to SI units by multiplying by 10-12 to get rid of the p in pF, and 
multiplying it by 100 to get rid of the c in /cm.  This gives:
CL = (4ε0 ℓ/π) + 8×10-12 D + 27×10-12 D√(D/ℓ )     [Farads]
Now, factoring 4ε0ℓ/π from each of the terms we get:
CL = (4ε0ℓ/π) [ 1 + {8×10-12 π/(4ε0)}D/ℓ + {27×10-12 π/(4ε0)}(D/ℓ )3/2 ]
Which, after re-enumerating the empirical constants (and avoiding the introduction of rounding 
error by retaining more significant figures than is justified), gives:
CL = (4ε0/π) ℓ [ 1 + 0.7096(D/ℓ ) + 2.395(D/ℓ )3/2 ]     [Farads]     . . . . (3.1)
Comparing this with equation (2.6), shows that Medhurst has given us the coefficient kE/kH as:
kE / kH = [ 1 + 0.7096(D/ℓ) + 2.395(D/ℓ )3/2 ]
We will not however accept Medhurst's formula as it stands, there being several shortcomings 
which need to be addressed.
     The first issue is that, in 1947, carrying out a least-squares fitting procedure on any sizeable 
dataset could amount to several days of work.  Consequently, Medhurst's statistical investigation is 
minimal.  He does however report his data; which, although not in raw form, are nevertheless as 
adjusted prior to fitting.  Hence we can repeat the analysis.
     Writing equation (3.1) with undefined empirical coefficients we have:
CL = (4ε0/π) ℓ [ 1 + k1 (D/ℓ ) + k2 (D/ℓ )3/2 ]
Dividing both sides by (4ε0/π)D gives:
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(CL/D) / (4ε0/π) = (ℓ/D) [ 1 + k1 (D/ℓ ) + k2 (D/ℓ )3/2 ]
Multiplying (ℓ/D) into the right-most bracket gives:
(CL/D) / (4ε0/π) = (ℓ/D) + k1 + k2 (ℓ/D)-1/2

and subtracting (ℓ/D) from each side gives:
(CL/D)/(4ε0/π) - (ℓ/D) = k1 + k2 (ℓ/D)-1/2

This is a straight-line graph of the form y=a+bx, with:
y = [ (CL/D)/(4ε0/π) ] - (ℓ/D)
Notice here that the derivative ∂y/∂(CL/D) is a constant. Hence there is no non-linear scaling of 
uncertainties to contend with in this case. 
     Medhurst reports his adjusted data as a table of CL/D vs. ℓ/D.  What he actually measured in each 
case however, was capacitance in the range of about 1 to 10pF.  Hence we should note that the 
uncertainty of a CL/D value is probably best expressed as a percentage common to the whole 
dataset.  It transpires however, that the regression line for Medhurst's function does not lie 
particularly close to the data for low CL/D values when realistically weighted.  The problem is that 
the choice of polynomial is not optimal, and needs artificial weighting in order to force it on to the 
lower asymptote.  Thus, assuming for purely pragmatic reasons that all of Medhurst's data have 
equal uncertainties, a simple least-squares fit19 (spreadsheet: Medhurst.ods, sheet 1) returns the 
following information :
k1 = 0.824903 ± 0.089 
k2 = 2.328995 ± 0.073
σCL = 3.6 D pF 
the latter statistic meaning that a value for CL computed from the formula below has a standard 
deviation in pF of 3.6 times the coil diameter in metres.  Hence, Medhurst's formula, in its best state 
of optimisation is:

CL = (4ε0/π) ℓ [ 1 + 0.8249(D/ℓ ) + 2.329(D/ℓ )3/2 ]     [Farads] r >> p 3.2
Medhurst refitted

Our best estimate for the coefficient kE/kH using Medhurst's data and choice of fitting function is 
therefore:

kE / kH = 1 + 0.8249(D/ℓ) + 2.329(D/ℓ)3/2 Solid polystyrene former 3.3

Equation (3.2) describes the data fairly well, but the pattern of residuals (observed minus 
calculated) is not random (see: Medhurst.ods, sheet 1)  and, as mentioned above, the weighting 
required in order to obtain it is not realistic.  This indicates that a different choice of fitting function 
will give a better result (i.e., a smaller standard-deviation of fit).  There is however no point in 
pursuing this matter until we have solved the riddle of the missing dielectric constant.

19 For explanation of the statistical methods used in this article; see Scientific Data Analysis. D W Knight. Available 
from www.g3ynh.info
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4. Coil-former dielectric
All of Medhurst's coils were wound on solid polystyrene rods.  No matter whether we subscribe to 
the 'capacitance between adjacent turns' hypothesis, or to a transmission line theory; even the most 
cursory consideration of the fields involved will tell us that the dielectric constant of the coil-former 
must appear in any expression for self capacitance.  In fact, it is odd that Medhurst did not raise this 
matter, especially since he did briefly consider the issue of dielectric losses in determining Rac .  If 
he accepted that the dielectric was penetrated by the electric field, then why did he assume that it 
would not affect the capacitance?
     A clue to the conundrum can be had by plotting Medhurst's formula and comparing it against two 
lines: one being the long-coil asymptote for the case where the effective permittivity is the same as 
that of air, i.e.;
CL/D = (4ε0/π)(ℓ/D)
the other being the the long-coil asymptote for the case where the effective permittivity is average 
of that of the coil former and the surrounding air.  Medhurst made all of his measurements at 
frequencies in the range 460KHz to 25MHz.  The dielectric constant of typical polystyrene in this 
region of the spectrum is 2.56.  Hence the average relative permittivity is:
(2.56 + 1)/2 = 1.78
and the asymptotic formula in that case is:
CL/D = 1.78 (4ε0/π)(ℓ/D)
The comparison is given in the graph below, with Medhurst's adjusted data superimposed 
(spreadsheet: Medhurst.ods, sheet 2).
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It is obvious that when the coils become long and thin, the data converge with the line 
corresponding to an effective relative permittivity of 1.  This behaviour can be interpreted in one of 
two ways: either the coil former dielectric plays no part in determining the self-capacitance; or the 
effect of the coil former material diminishes as ℓ/D increases. 
     Medhurst obviously chose the first interpretation.  He appears to have done so (despite having 
used the relationship between conductor length and SRF in deducing the asymptotic form) because 
he was attempting to interpret his findings according to the then prevailing wisdom: which is that 
self capacitance is composed of internal and external components.  The internal component is the 
capacitance between adjacent turns, which he considered to be the minor contributor.  The external 
component is the capacitance from the coil body to the ground plane, which he considered to be 
dominant.  This gave him qualitative grounds for rejecting Palermo's theory, and presumably a 
reason for ignoring the coil former dielectric; but he seems to have decided to terminate the 
investigation without pursuing the matter further.  We can perhaps understand his lack of curiosity 
at this point, by observing that the shortcomings of Palermo's work had practically doubled the 
amount of work he needed to do in order to complete his study of AC resistance.  What is less 
excusable is the assumption, by several generations of engineers since then, that Medhurst's formula 
can be applied to all coils, rather than just to coils with solid polystyrene cores.
     Here, of course, we take the view that the SRF is a transmission-line resonance, in which case 
the disappearance of the coil-former permittivity from the long-coil asymptotic behaviour is not 
difficult to explain.  Consider a wave travelling along the helix.  In the middle region of the 
solenoid at least, the electric vector will be substantially perpendicular to the axis (actually, tilted by 
an amount equal to the pitch angle).  The boundary conditions on Maxwell's equations for this 
problem also allow that the electric field is continuous across the conducting wall20. Hence the 
relative permittivity on the inside of the solenoid will affect wave propagation.  When the 
circumference is small in comparison to the wavelength however, the electric field will be 
cylindrically symmetric.  This means that the electric fields penetrating into the interior of the 
solenoid from opposite sides will be almost equal and opposite.  Therefore the fields on the inside 
of the solenoid will tend to cancel; the degree of cancellation being minimal when ℓ/D<<1 and 
almost complete when ℓ/D>>1. 
     It follows that self-capacitance can be conceived as the sum of two parts, although not as 
envisaged by Medhurst.  If we define the relative permittivity external to the solenoid as εrx and the 
relative permittivity on the inside as εri , then we need to re-derive the formula in such a way that:
εr = εrx   when   ℓ/D>>1
and
εr = (εri + εrx )/2   when   ℓ/D<<1
i.e., for the latter case; when the diameter of the coil is large in comparison to the length, the 
effective permittivity tends to the average of the internal and external permittivities.  It is worth 
noting here incidentally, that Sichak21, in his study of helically-loaded coaxial lines, comes to 
effectively the same conclusion in deriving velocity factors.
     The general first-order expression for coil self-capacitance was derived earlier as:
CL = ( 4 ε / π ) ℓ ( kE / kH ) / Cos²ψ
We can still retain this general form, and satisfy the required asymptotic behaviour, by re-writing 
the equation as follows:
CL = ( 4 ε0 / π ) ℓ [ εrx + kc (εrx+εri )/2 ] / Cos²ψ
Here the external relative permittivity εrx has been separated from the original permittivity factor ε, 
and kc is a coefficient which goes to zero when ℓ/D>>1.  Now factoring εrx from the square bracket 
we have:

20 See, for example, Corum & Corum, cited earlier.
21 Coaxial Line with Helical Inner Conductor. W Sichak. Proc. IRE. Aug. 1954. p1315-1319. Correction Feb. 1955, 

p148.  See equations (5) and (6).
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CL = ( 4 ε0 εrx / π ) ℓ [ 1 + kc (1+εri/εrx)/2 ] / Cos²ψ 4.1

Which is in the same form as equation (3.2) (Medhurst's formula optimised) when εrx=1 and 
Cos²ψ=1.  Also noting that εri=2.56 for Medhurst's data, we have an initial estimate for kc from 
equation (3.3)
1.78 kc = 0.8249( D/ℓ ) + 2.329( D/ℓ )3/2 
i.e.,
kc = 0.4634( D/ℓ ) + 1.3084( D/ℓ )3/2

5. Empirically corrected formula for self-capacitance
Now having the complete form for an expression for self-capacitance (at least, in as far as 
Medhurst's approach is valid), we can use Medhurst's data, or indeed good data from any source, to 
find an expression for the coefficient kc . We start by dividing both sides of equation (4.1) by D and 
rearranging:

┌
│
│
└

(CL/D) Cos²ψ 

(ℓ/D) (4ε0/π) εrx

- 1

┐
│
│
┘

2 

( 1+εri/εrx )
= kc (5.1)

If Medhurst's data are used to evaluate kc using this expression, it will be found that a roughly-
straight line of negative gradient is obtained when log(kc ) is plotted against log(ℓ/D).  Hence, to a 
first approximation, there is a regression line having the form:
ln(kc) = k1 - k2 ln(ℓ/D)
We can, of course, make the gradient positive by inverting the argument of the logarithm on the 
right, i.e.:
ln(kc) = k1 + k2 ln(D/ℓ )
Fitting the data on this basis yields:
ln(kc) = 0.604 + 1.363 ln(D/ℓ )
(see spreadsheet: Medhurst.ods, sheet 3).  Although the existence of a logarithmic relationship may 
be analytically significant however; the fit, corresponding to a standard deviation of 4.7% for unit 
variance of an observation of unit weight (χ²/ν=1), is not as good as that obtained in the process of 
optimising Medhurst's formula (section 3).  Hence a more complicated function with a greater 
number of adjustable parameters is needed. 
     Taking the exponent of the expression above gives a first approximation for kc as:
kc ≈ exp[ ln(1.83) + 1.363 ln(D/ℓ ) ]
where ln(1.83) = 0.604. Hence:
kc ≈ 1.83 (D/ℓ )1.363

The fit can obviously be improved by replacing this with a polynomial in D/ℓ . Notice also that kc 

must go to zero when ℓ/D is very large, i.e., when D/ℓ→0 .  Hence the required polynomial has no 
zero-order (i.e., constant) terms.  If the polynomial has a finite first-order term however, we can 
create a new expression with a finite zero-order term by multiplying throughout by ℓ/D; i.e., if we 
have a starting expression:
kc = k1 (D/ℓ ) + k2 (D/ℓ )p2 + k3 (D/ℓ )p3 + . . . 
then
(ℓ/D) kc = k1 + k2 (D/ℓ )p2-1 + k3 (D/ℓ )p3-1 + . . . 
Fitting the data to an expression of this type is easily accomplished using a modified linear 
regression procedure, where the third and higher terms (if needed) are manually adjusted.  Hence 
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we rearrange equation (5.1) so that (ℓ/D)kc is the coefficient to be represented as a polynomial:

┌
│
│
└

(CL/D) Cos²ψ 

(4ε0/π) εrx

- (ℓ/D)

┐
│
│
┘

2 

(1+εri/εrx)
= (ℓ/D) kc (5.2)

This expression is now taken to represent a simple polynomial of the form:
y = k0 + k1 x + k2 x² + . . . 
Note that the relationship between x and D/ℓ is yet to be decided; but by inspection of Medhurst's 
formula it should come as no surprise that something approaching an optimal fit is obtained when: 
x = √(D/ℓ )
In performing a least-squares fit, we must, of course, weight the data according to their relative 
uncertainties.  Medhurst does not report the actual capacitances or diameters used in obtaining his 
table of CL/D values, but by fitting the data initially with equal weights, it can be seen from the 
pattern of residuals that the largest CL/D values have the greatest scatter.  Also, the largest CL/D 
values are those for long coils, and the data for long coils are least important because the long coil 
asymptotic behaviour is analytically defined.  Hence it is reasonable to fit the data on the basis that 
the uncertainty in an observation is proportional to the absolute value of the observation, i.e.:
δ(CL/D) = u (CL/D)
where u is a proportionate uncertainty (and 100u is a percentage uncertainty) common to the whole 
dataset.  From this we can determine the uncertainty of a y value as:
δy = [∂y/∂CL/D)] δ(CL/D) = [∂y/∂(CL/D)] u (CL/D)
The derivative ∂y/∂(CL/D) is obtained by differentiating (5.2):
∂y/∂(CL/D) = [ Cos²ψ / { (4ε0/π) εrx }][ 2 / (1+εri/εrx) ]
Hence:
δy = u (CL/D) [ Cos²ψ / { (4ε0/π) εrx }][ 2 / (1+εri/εrx) ]
Which, for coils with external air dielectric and small pitch angle, reduces to:
δy = u [ (CL/D) / (4ε0/π)][ 2 / (1+εri) ]
The statistical weight of an observation is given by:
wi = 1/δyi²
and u is adjusted until the standard deviation of fit, χ²/ν=1.
     Details of the final fitting procedure can be had by examining the spreadsheet file: 
Medhurst.ods, sheet 4.  A good fit (u = 0.021) is obtained using the polynomial:
(ℓ/D) kc = k0 + k1 √(D/ℓ ) + k2 (D/ℓ )
where:
k0 = 0.717439 ± 0.027 
k1 = 0.933048 ± 0.021
k2 = 0.106
Thus:
CL = ( 4 ε0 εrx / π ) ℓ [ 1 + kc (1+εri/εrx)/2 ] / Cos²ψ    ± 2.1%
where
kc = 0.717439(D/ℓ ) + 0.933048(D/ℓ )3/2 + 0.106 (D/ℓ )²

5.3
CL-DAE

This will be referred to as the DAE (doubly-asymptotic, empirically corrected) formula for solenoid 
self-capacitance (generally applicable when ℓ/D>>1 , or when the externally connected capacitance 
is > CL ).  Note that there is little point in extending the polynomial; a standard deviation of 2.1% 
being about right for the data available (and the theory as it stands), and the absence of high-order 
terms making it reasonably safe to extrapolate. 
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6. Tubular coil formers
Medhurst was either wise or fortunate in his decision to wind his test coils on solid rods all made 
from the same material. Had he chosen to use tubes, or a variety of dielectrics, he would not have 
been able to fit his short-coil data successfully.  From this it seems likely that he was expecting to 
see a dielectric effect; but that the long-coil asymptotic behaviour he discovered allowed him to 
neglect it.
     Most coil-formers used in practice are, of course, tubular.  This gives us the problem of how to 
determine εri , which will be some weighted average of the permittivities of the solid dielectric and 
the air inside.  There are two principal issues here: one being that of determining the rate of decay 
of the electric field on moving from the conducting wall to the coil axis; the other (since this is a 
correction for short coils) being that of determining the fringing field corrections for turns close to 
the two ends of the coil.
     By setting up the scattering experiment described in section 1, it is easy to demonstrate that the 
introduction of any substantial amount of dielectric material to the inside of a coil causes a 
reduction in the SRF.  Apart from that however, there is a dearth of good quantitative information 
on the effect of  inhomogeneous internal dielectrics.  The best we will do here therefore, is to posit a 
first-order correction which is reasonably realistic.
     It seems likely that ignoring end effects and pitch angle will not cause too much error.  In that 
case we only have to consider fields perpendicular to the solenoid axis.  We will also assume that 
the circumference of the cylinder is short in comparison to the wavelength, in which case, there will 
be no phase shift from one turn to the next.  Thus we assume that the electric field is radially 
symmetric, and that its strength is at a maximum at the conducting wall and zero at the axis.  This 
arrangement precludes exponential decay (which only gives zero at infinite distance), and likewise 
precludes an inverse square law (which is associated with radiation).  The conclusion is that, when 
the material on the inside of the coil is homogeneous, the decay will be roughly linear.
     We now need to define the problem in such a way that dielectric close to the conducting wall has 
more effect than dielectric close to the coil axis. This can be done crudely by considering the area 
under the curve of relative field strength vs. relative radius divided into regions having different 
dielectric constants.  We then assume that the average dielectric constant is weighted according to 
the relative areas in the two regions. This is a simple integration problem, so simple in fact that 
calculus is not needed.
     In most practical situations, the medium in the hollow part of the cylinder will be the same as 
that outside the coil (i.e., air usually).  Hence the inner medium is 
taken to have a dielectric constant εrx . The coil-former tube is 
made from a material having a dielectric constant εrf , and the tube 
has a relative wall thickness w.
     The total area under the curve is ½. The area in the region 
having a dielectric constant εrx is (1-w)²/2.  The area in the region 
having a dielectric constant εrf is:
[1 - (1-w)²]/2. 
Hence:
εri = εrx (1-w)² + εrf [1 - (1-w)²]
If ro is the outside radius of the coil former, and ri is the inside 
radius of the coil former, then:
(1-w) = ri/ro 
Hence:
εri = εrx (ri/ro)² + εrf [1 - (ri/ro)²] 6.1

Note that in determining the internal permittivity in this way, it is assumed that there is no 
difference between ro and the effective radius of the coil.  Since the effective radius tends towards 
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the inner solenoid radius (average radius - wire radius) at high-frequencies, this approximation is 
unlikely to cause a large error.  In the current-sheet approximation, of course, the effective radius is 
the same as ro by definition.
     When using equation (5.3) to calculate self-capacitance, the internal permittivity parameter 
required is εri/εrx . Hence, equation (6.1) can be conveniently rewritten:

εri / εrx = (ri/ro)² + (εrf / εrx )[1 - (ri /ro)²] 6.2

It must be stressed that this is a very crude correction.  A detailed theoretical analysis will no doubt 
produce a different formula, and this one is offered strictly on the basis that any correction is better 
than no correction at all.

7. Inter-turn capacitance
A trivial investigation involving a Grid-Dip Oscillator and a set of engineer's callipers will confirm 
that the various resonances exhibited by a disconnected coil are associated with the total conductor 
length.  It is therefore extraordinary that the self-capacitance of single-layer coils is still routinely 
attributed to the static capacitance which is presumed exist between adjacent turns.  This warrants 
consideration of whether of not the inter-turn capacitance hypothesis is plausible, and whether or 
not it can it provide insights into the properties of inductors.
     The basic idea is that if we inspect a small region of a solenoid wall we see a set of wires lying 
parallel to each other.  It is then supposedly logical that there will be a capacitance between any 
chosen pair of wires; and that this capacitance can be calculated from physical dimensions.  There is 
a small paradox inherent in the fact that every infinitesimal element of capacitance is shorted-out by 
a loop of wire, but we must put such details aside in order to proceed. 
     The capacitance between a parallel pair of conducting cylinders is given by Russell's formula22:

C =
ε π h 

ln{ (p/d) + √[(p/d)² - 1] }
[Farads] Russell's formula

h >> p , h >> d (7.1)

Where h is the length of the cylinders, p is the distance from axis to axis, and d is the cylinder 
diameter.  Note that, if the surrounding medium is air, ε = ε0 ; and in old publications, ε0 × π is 
sometimes given approximately as 1/3.6 pF/cm. Also:
ln[ x + √(x² - 1)] = Arccosh(x)
which gives rise to the compact form:

C =
ε π h 

Arccosh(p/d)
[Farads] (7.1a)

Since Arccosh (inverse hyperbolic cosine) is a built-in function of spreadsheets and some 
programming languages, the latter formula is usually most convenient.  Note that Arccosh(1) = 0 , 
which means that the capacitance goes to infinity when the cylinders are just touching without 
making electrical contact.

22 See, for example: Radio-Frequency Measurements by Bridge and Resonance Methods, L. Hartshorn, Chapman 
& Hall, 1940 (Vol. X of "Monographs on Electrical Engineering", ed. H P Young). 3rd imp. 1942.
Ch VI, section 3: Calculation of capacitance. (Russell's formula for wires on p104). 
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The 1934 paper of A J Palermo23 was mentioned earlier as the source of Medhurst's frustrations. 
Palermo, using a somewhat dubious argument involving charge, asserts that, since the voltage 
between adjacent turns is 1/N times the voltage across the whole coil, we should take the self-
capacitance of the coil to be 1/N times the capacitance calculated using equation (7.1a).  To 
calculate that capacitance he integrates over the whole coil (ignoring pitch angle), effectively 
choosing to identify h=πDN, and arrives at the formula:

CL =
ε0 π² D 

Arccosh(p/d)
Palermo's formula (7.2)

Relative permittivity is ignored, and there is no mention of coil-former dielectric anywhere in the 
paper.
     Notwithstanding the painful logic involved in getting this far, there is a straightforward 
mathematical error in Palermo's formula.  The point of objection lies in the assumption that the 
turns overlap for the entire length of the wire; whereas there is no adjacent turn on the outside for 
the two turns at the ends of the coil.  Hence he should have taken h to be πD(N-1), in which case he 
would have obtained the expression:

CL =
ε0 π² D (N-1)

N Arccosh(p/d)
CT2T (7.3)

For the sake of working nomenclature, we will refer to this corrected version of Palermo's formula 
as "CT2T" (capacitance from turn to turn).
     We cannot know whether Palermo started by making measurements and then derived his 
formula, or vice versa.  It seems likely that he had at least one measurement available initially 
however, that of his coil No. 1.  The coil was made from 2 turns of 6.24mm diameter wire, with an 
average diameter of 74.7mm and a pitch of 16.7mm.  Palermo measured the self-capacitance as 
3.2pF, and calculated 3.9pF using an approximate version of equation (7.2).  He considered this to 
be a "very severe test" of his formula; whereas, in view of the mathematical error, it is actually just 
a coincidence.  Subsequent coils had turns numbers in the range of 5 to 112 however, in which case 
the difference between (7.2) and (7.3) is less significant.
     Palermo reported a total of 19 self-capacitance measurements, 12 of which he carried out 
himself, and 7 of which were communicated to him by F W Grover of the National Bureau of 
Standards.  It was in the group of measurements performed by Palermo himself that Medhurst 
found some of the numbers to be unreproducibly large.  Later we will compare the measurements 
against the DAE formula and show that Medhurst was right to cry foul; but, in fact, the extent of the 
tampering was even greater than Medhurst had suspected.
     Palermo's calculations are repeated in the spreadsheet CL_theor_test.ods (sheet 3).  His formula 
often produces values which are much too large.  In such cases, he appears to have adopted the 
habit of adjusting the calculated value downwards and the measured value upwards in order to 
obtain plausible agreement.  Since he acknowledges the help of F W Grover however, he was 
evidently not in a position to tamper with the NBS data; and so in that case he confined himself to 
writing down false calculation results.  In the worst instance, his formula gives 27pF, but he reports 
12.9pF to confer with an NBS measurement of 12.8pF.  There are other sleights of hand for those 
who wish to pursue the issue, but overall the paper is a travesty.
     That then is the insalubrious basis on which the inter-turn capacitance hypothesis became part of 
electromagnetic folklore.  What Palermo hoped to gain by promoting his defective theory is difficult 

23 Distributed Capacity of Single-Layer Coils, A J Palermo. Proc. IRE. Vol 22, No. 7, July 1934. p897-905. 
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to guess; but he may have been motivated by inability to accept failure after an early success.  His 
formula was subsequently turned into tables and abacs to 'assist' the radio engineer; and his dogma 
diffused naturally into the textbooks to lie in wait for the unwary.

The 'capacitance between adjacent turns' hypothesis re-emerged in a new guise in 1999, in a paper 
by Grandi, Kazimierczuk, Massarini and Reggiani (GKMR)24.  These authors cite Medhurst, only to 
dismiss his work for being empirical; and make no mention of Palermo despite the strong parallel 
and Medhurst's barbed discussion. 
     In the GKMR approach, the coil is considered to be equivalent to a set of wire rings.  In that 
case, since there are N-1 gaps between N turns, the capacitance of an isolated coil is given by the 
capacitance between any pair of rings divided by N-1.  The length of a ring is πD ; and so, using 
Russell's formula (7.1), and presuming the use of un-insulated wire, we have:

CL =
ε0 π² D 

(N-1) ln{ (p/d) + √[(p/d)² - 1] }
GKMR (7.4)

Grandi et al. support this derivation by measuring the capacitance of actual sets of wire rings.  In 
doing so they demonstrate that the neglect of capacitance between non-adjacent turns is not 
important, and that the curvature of the wires does not significantly affect the validity of Russell's 
formula.  The issue which must concern us here however, is that the wire-ring model does not have 
the magnetic field of the actual solenoid, and it does not consider the electromagnetic propagation 
which dictates the relationship between the electric and magnetic vectors at all points in the field.

A fair test of all of the theories discussed so far can be had by using data from a source with no 
theoretical axe to grind.  Such data appear in the documentation for the Coilcraft Maxi Spring™ 
(132-xxSM) series of surface-mount air-core inductors25, the guaranteed lower limit of SRF having 
been recorded to 3 decimal places.  In fact these "SRF" data are extrapolations, made from jig 
measurements with finite stray capacitance, and so correspond to the pseudo-SRF calculated from 
the parallel combination of inductance and self-capacitance.  Hence, using the published nominal 
inductance (±2%), they can be converted back to the self-capacitances they cryptically represent. 
What is particularly useful about this dataset is that the solenoid length ℓ and diameter D, and the 
wire diameter d, are constants.  The only variables are the number of turns N and the pitch to wire 
diameter ratio (p/d).  Hence there is no ambiguity in deciding between theories which predict no or 
minimal variation in self capacitance with turn-spacing, and those which make predictions to the 
contrary.
     In order to test the various theories, the Coilcraft solenoid parameters were extracted from the 
published mechanical data as follows: 
ℓ = 7.98±0.51mm
D = 4.8mm (estimated)
d = 0.397mm (estimated).
The calculations are given in the spreadsheet: CL_theor_test.ods (sheet 2), and the results are 
shown graphically below:

24 Stray Capacitances of Single-Layer Solenoid Air-Core Inductors", G. Grandi, M K Kazimierczuk, A Massarini, 
U Reggiani. IEEE Transactions on Industry Applications, Vol 35, No. 5, Sept/Oct 1999, p1162-1168. 

25 Coilcraft Maxi Spring Air Core Inductors.  Document 185-1, 2003.  www.coilcraft.com
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The data are noisy, but there is obviously minimal correlation between the capacitance and the p/d 
ratio.  Instead, the points lie slightly above the εrx=1 external-permittivity contour from the DAE 
formula (5.3).  The fact that the DAE prediction is a little low is explicable on two counts: Firstly, 
the experimental capacitances are calculated from the guaranteed minimum pseudo-SRF, and so 
correspond to a guaranteed 'no-greater-than' value.  Secondly, each of the coils has a tight-fitting 
rectangular plastic cover, which touches the cylinder at three points around the circumference (see 
illustration in datasheet). 
     The curve labelled "CT2T" is produced by the corrected version of Palermo's formula (7.3).  The 
uncorrected version (7.2) is even worse.  The curve labelled "Grandi et al." is produced by the 
GKMR formula (7.4).  None of these theories bears any resemblance to the data series, but all are 
capable of matching a single measurement by deliberate or accidental choice of turn-spacing. In the 
case of the GKMR formula, the turns need to be very close together in order for the coincidence to 
occur.
     Interestingly, the theoretical work of Grandi et al. was supported by a single measurement on an 
actual coil, this having the very low p/d ratio of 1.02.  The coil was wound using 16 turns of 10mm 
diameter wire (presumably tubing), with a pitch of 10.2mm maintained by using "plastic spacers" 
present for about 10% of the turn length.  The type of plastic and its dielectric constant were not 
reported.  The mean coil diameter D was 326mm, and its length (Np) was 163.2 mm.  The 
inductance of the coil was measured to be 82.3μH at 10KHz, and its (pseudo) SRF was 5.1MHz, 
giving the self capacitance as:
CL = 1 / [(2πf0s )² L] = 11.83 pF
Equation (7.4) (GKMR) predicts the capacitance to be 9.51pF, and Grandi et al. argue that the 
higher value in practice is due primarily to the effect of the plastic spacers, and to a lesser extent to 
approximations used in the derivation of their formula.  It seems curious however, given that the 
coil was robust enough to be self-supporting and that the spacers affected the capacitance, that the 
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helix had to be compressed to the point where spacers were needed before the sole reported 
measurement was made.
     The DAE formula (5.3) predicts the capacitance of the GKMR test coil to be 10.1pF in the 
absence of dielectric materials. The DAE prediction, of course, is not greatly affected by turn 
spacing.

Of the self-capacitance prediction methods considered, all except the transmission-line related DAE 
approach have now failed.  Hence it is interesting to compare the data discussed so far against a set 
of coil-former permittivity contours generated by the DAE formula.  The data are shown plotted 
below as (CL/D)Cos²ψ vs. ℓ/D, and individual coil details can be had by inspecting the spreadsheet: 
CL_theor_test.ods (sheet 1).

The most arresting feature of the graph is the enormous scatter in the 'measurements' performed by 
Palermo.  The six points above the curve for εri=6 are those which Medhurst suspected to be fake. 
Presuming that Palermo was not in the habit of winding his coils on ferroelectric formers, it seems 
that Medhurst's suspicions were well grounded.  The Palermo measurements falling below εri=4 are 
probably genuine however, especially that of his coil No. 1.  The latter lies a little above the εri=1 
contour, even though the wire was thick enough to be self-supporting; but there may have been 
dielectric supporting material present during the measurement, and no details of the stray 
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capacitance corrections were given. 
     The measurements supplied to Palermo by the NBS all fall in a tight group, despite the coils 
having turns numbers between 5 and 112.  The situation, between the contours for εri=3 and εri=5, is 
consistent with the then (1934) standard practice of winding reference inductors on wooden 
cylinders.
     The remaining data have been discussed previously, and all lie above the εri=1 contour due 
(arguably) to the presence of dielectric material, or due to the measurement being an upper limit.

In summary, it is fair to say that theories which attempt to attribute the self-capacitance of single-
layer solenoids to the inter-turn capacitance are wrong.  In Palermo's case, the problem lies firstly in 
the assumption that a single wire can behave like two wires lying parallel, and secondly that the 
resulting capacitance should be divided by N.  Logically, his theory is no better than a guess; which 
happens to work roughly for some coils, but has no actual predictive power. 
     The GKMR theory however is more plausible and challenges us to explain why it fails.  A coil of 
wire is not a short-circuit at high frequencies.  It can sustain a voltage across its terminals, and the 
current which flows can be resolved theoretically into three components; these being the resistive, 
inductive and capacitive contributions.  If we cut the solenoid wall parallel to the axis and flatten it 
out, we will have a set of N parallel wires with N-1 gaps, and the capacitance of this structure is 
easily calculated.  Why then is it not the self-capacitance of the coil?
     The fallacy lies in the assumption that, since the coil can be modelled electrically as a set of 
lumped components, then the lumped components must have an independent existence within the 
coil.  In fact, it is bad enough to assume that the resistance is independent of the reactance, but at 
least the error in that case is not serious provided that the Q is high.  The GKMR theory fails 
because the reactive elements are primarily aspects a single energy storage mechanism, and the 
failure is clear and positive evidence in favour of that view.  Cutting the coil open destroys the 
inductance, and thereby disrupts the all-important relationship between the electric and magnetic 
fields.
     From the relationship between conductor length and self resonance, and from the ability of the 
coil to emit circularly polarised radiation when excited by linearly polarised radiation; we infer the 
existence of an electromagnetic wave propagating along the helix, and presume it to be the principal 
reservoir of stored energy giving rise to the reactance.  The overall field surrounding the coil will be 
the superposition of the fields from the individual turns.  In this, the overall electric field will be at a 
maximum in a direction perpendicular to the wires and parallel to the pitch direction, i.e., it will be 
tilted away from being perpendicular to the coil axis by an amount equal to the pitch angle.  If we 
cut the coil open lengthwise, the helical waveguide will cease to function, the structure will turn 
into a capacitor, and the principal direction of the electric field will switch to point parallel to the 
axis.  It is this difference in the principal field directions between the static capacitance model and 
the actual coil which causes the GKMR theory to fail.
     It is conceivable however, that although most of the energy is stored in a propagating wave, the 
inter-turn capacitance might still exist as a parasitic component.  In that case, we would need to 
include the GKMR capacitance in the total self-capacitance, and in correcting the DAE formula 
using actual data we might have missed a systematic offset.  Fortunately, no such offset is evident, 
as may be seen by re-examining the graph comparing Coilcraft data and theory which was given 
earlier.  When the spacing between turns is large, the GKMR formula predicts a small capacitance 
which is nearly independent of N.  It is only when the gap between turns starts to close that the 
GKMR capacitance suddenly shoots up, but there is no corresponding trend in the data.
     It was suggested by Medhurst, that the fact that the capacitance does not increase asymptotically 
when the gap between turns closes is due to the proximity effect; i.e., due to the tendency for the 
current streams in adjacent turns to repel each other when they are very nearly in phase.  The 
proximity effect would indeed modify the asymptotic behaviour, but it does not explain the 
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complete absence of observable effect.
     The overall electric field of the coil (E0 say) can be resolved into two components; E0Cosψ 
(perpendicular to the axis) and E0Sinψ (parallel to the axis).  Hence we should examine the 
possibility that the GKMR capacitance might be associated with the E0Sinψ component.  The 
counter-indication here is that this component is typically very small, and if we allow the GKMR 
capacitance to set the ratio of the radial and axial fields, the energy stored in the radial field 
becomes unrealistically large. 
     We are drawn to the conclusion that the most prominent feature of the inter-turn capacitance 
hypothesis is that it consistently fails to explain any aspect of self-capacitance.  This takes us back 
to an observation made at the beginning of this section, which is that the idea is paradoxical.  If we 
draw a line between two points situated on adjacent turns, there will always be a loop of conductor 
connecting those points; and in the regime in which the concept of self-capacitance is valid (i.e., 
well below the SRF) the length of that loop will be small in comparison to the wavelength.  Hence 
the inter-turn capacitance is shorted-out until the frequency becomes relatively high, an awkward 
fact which does not bode well for the derivation of a constant static capacitance by that method. 
This does not mean that there will be no 'adjacent turns' effect however, it is just that we are looking 
for it in the wrong way.
     It was mentioned in section 2 that, although variations in self-capacitance make a large 
difference to the SRF, small variations in the SRF do not make much difference to the self-
capacitance.  It is also obvious that the distributed capacitance from turn to turn will become 
significant at high frequencies.  Hence we expect the turn spacing to affect the SRF, even if we 
cannot detect its effect on the self capacitance.  Specifically, the SRF will increase as the gap 
between turns closes; there being a limit where the solenoid becomes a continuous conducting tube, 
helical propagation ceases, and the axial 'slow wave' attains a phase velocity close to c.

8. Interfacial capacitance
Now that we have rejected the inter-turn capacitance hypothesis; it needs to be stated that the so-far 
preferred DAE formula, while being perhaps the best we can do with Medhurst's approach to self-
capacitance, is by no means definitive.  There are ways in which a static capacitance might be 
evoked to account, at least in part, for the self-capacitance of a single-layer solenoid.  
     It is, of course, essential that corrections for jig and lead capacitance are made whenever self-
capacitance is measured, but there is the problem of deciding where the connecting wires end and 
the coil begins.  Normally we assume that the leads end at the cylinder wall, but this is merely a 
pragmatic solution in aid of an approximate analysis.  Hence it is legitimate to ask whether (say) the 
two turns at the ends of the coil might act like capacitor electrodes.  This is also equivalent to asking 
whether there should be a static component in the fringing-field corrections. 
     It is also arguable that a notionally static capacitance might be invoked in order to account for 
self-capacitance in full.  If we treat the end turns as electrodes, what we have is a capacitor stuffed 
with a bizarre type of dielectric which, according to recent parlance, can be classified as a 
"metamaterial".  An ordinary dielectric acquires its properties by virtue of the scattering of radiation 
from the atoms and molecules within; the emergent radiation being the superposition of the incident 
and scattered waves.  A metamaterial, on the other hand, acquires its properties by the scattering of 
radiation from engineered structures.  In the present case, we have a wire helix, which sustains an 
electric field and therefore has some dielectric quality.  This medium is, of course, highly 
dispersive; but its permittivity will not change rapidly with frequency provided that we keep well 
away from the SRF.  Thus, at low frequencies, we might usefully assume it to have a dielectric 
'constant'.  To derive an expression for that parameter is not straightforward, but we can at least see 
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what the experimental data have to say about it.
     The model in this case is a capacitor with parallel wire-ring electrodes; the wire diameter being 
d, the electrode separation being ℓ (i.e., the overall length of the coil), and the electrode 
circumference being πD.  To the relative permittivity of the intervening metamaterial, averaged over 
all space, we will assign the symbol εrh (h for helix).  Thus, using equation (7.1a) we have:

Cee =
ε0 εrh π² D 

Arccosh(ℓ/d)
[Farads] (8.1)

Now, since we do not know εrh , we can simply set it to 1 and see how the result compares against 
some actual measurements.  This is done in the spreadsheet: CL_dynamic.ods (sheet 1), and the 
outcome is remarkable.  As can be seen from the table below, the formula produces plausible but 
somewhat low estimates of the self-capacitance of air-cored coils.

Coil CL Measured / pF Cee / pF, εrh = 1
Palermo No. 1 3.2 2.76

GKMR 11.83 8.18
Colicraft 132-xxSM series (average) 0.205 0.114

It is surprising that advocates of the static origin of coil self-capacitance have never discovered this 
simple formula.  Had they done so it would have given good service, being more accurate than any 
of the inter-turn capacitance theories, and actually better then Medhurst's formula when the coil has 
no core. 
     Which brings us to the issue of whether or not we might have missed something in the doubly 
asymptotic approach of section 2.  Mercifully however, the answer is 'no', or at least 'nothing 
serious'.  The clue lies in the metamaterial permittivity factor εrh ; which is effectively defined as: 
'that factor which makes the self-capacitance come out correctly'.  If we want to get equation (8.1) 
to work perfectly, we will need to put all of the helical transmission-line theory into εrh .  Hence the 
static capacitance approach does not invalidate the DA approach, because it is just another way of 
looking at the same problem.
     Finally however, we need to return to the question of whether or not there is a static inter-
electrode capacitance component hidden in the DAE formula.  To clarify this issue a little, we might 
also refer to it as the 'circuit interaction capacitance' or the 'interfacial capacitance'; the point being 
that it will be present when wires are connected to the coil, but not otherwise.  Equation (8.1) tells 
us that, depending on where the wires end and the coil begins, it might be large enough to make a 
significant contribution to the self-capacitance.  It is also consistent with what we know so far, 
which is that the apparent SRF of a coil connected to a jig is generally lower than that obtained 
from scattering measurements; unless the coil is very long and thin, in which case the two converge 
(arguably) because the hypothetical inter-electrode capacitance goes to zero when the two ends of 
the coil are a long way apart.
     Ultimately, it is difficult to deny the existence of an interfacial capacitance.  It amounts to saying 
that the connecting leads effectively penetrate into the coil to some extent; or that the end turns are 
special because they correspond to regions where helical propagation is not fully established.  It can 
also be understood in optical terms, it being related to the difference between having a sharp 
refractive-index boundary at the ends of the coil (no external wires) or a diffuse boundary (parallel 
impedance connected).  To some extent; it is already absorbed into the empirical coefficient of the 
DAE formula, except for a second-order (i.e., reasonably small) wire diameter effect. The concern 
is raised however, that the DAE formula could become seriously inaccurate for short coils (i.e., 



27

ℓ/D<<1) because there might be a need for terms involving ℓ/d as well as ℓ/D .

9. Dynamic model for self-capacitance
(provisional)
We cannot deny the existence of the line-length resonance.  It is easily demonstrated and logically 
obvious; and if we assume that the coil has a definable inductance, it can be converted into an 
equivalent capacitance.  There is however, no obvious basis on which to assume that the 
capacitance so calculated will remain unchanged at frequencies below the SRF, and so we overcame 
that problem partially in section 2 by introducing the parameter kE .  Now however, it is interesting 
to conjecture that the equivalent transmission-line resonance capacitance (CTL say) is roughly 
constant from DC to the SRF, and look for end-effects to explain why the in-circuit capacitance is 
greater than that of an isolated coil.  How this might work is envisaged as follows.
     Imagine a coil connected to the end of a transmission line, exchanging energy with a capacitor at 
the other end of the line.  A wave propagating along the line has its maximum E-field pointing 
across the plane in which the wires lie.  As it enters the coil however, it has to tilt over, so that it is 
in-line with the pitch direction by the time it reaches the middle of the coil.  Hence, at the ends of 
the coil, there is a substantial E-field component parallel to the coil axis, but this component largely 
disappears if the coil is disconnected from the line.  Hence a capacitance which evaporates when the 
external reactance heads for infinity.
     An expression which appears to be capable of analysing all of the author's multi-octave self-
capacitance measurements is:
CL = CTL + CFP [1 - CFP / (CFP + Cref ) ]                    . . . . . . . . . (9.1)
Where CFP is a hypothetical 'field-perturbation' capacitance, which is evoked to account for the 
change which must occur when the coil is attached to a circuit.  Cref is the external circuit 
capacitance, including strays.  When Cref  is greater than CFP (but not hugely so), the expression 
tends towards the limit:
CL → CTL + CFP  
This limit, of course, corresponds to the regime in which in-circuit self-capacitance measurements 
(including Medhurst's) are made.
     An expression for CTL is given by setting kE to 1 in equation (2.6).  It lacks any provision to 
account for coil-former dielectric however, and so we will start by only considering only the air-
cored case.  Also, we will presume that the magnetic-field inhomogeneity parameter is well-
approximated by Nagaoka's coefficient (kL), in which case we have:
CTL = ( 4 ε0 / π ) ℓ / ( kL Cos²ψ )
and for coils with closely-spaced turns:
CTL = ( 4 ε0 / π ) ℓ / kL                           . . . . . . . . . . . . . . . . . (9.2)
Now observe that, if we put εri = εrx = 1 into the DAE formula (5.3), we have a curve which 
corresponds to Medhurst's empirical data corrected back to air core.  
CL = ( 4 ε0 / π ) ℓ [ 1 + kc  ]
Certainly there is an assumption inherent in the way in which the effect of the polystyrene former 
was removed, but it is not unrealistic.  Thus we have tentative a way of isolating CFP .
     The first concern must be that CFP might be proportional to the end-to-end capacitance (Cee ) 
discussed in the previous section.  That would make a nonsense of the DAE formula, because it 
would imply that the self capacitance of short coils is strongly related to the ratio of coil length to 
wire diameter (ℓ/d).  There is however, insufficient scatter in the data to suggest that such might be 
the case in first order, and then there is the matter of boundary conditions.  When the length to 
diameter ratio (ℓ/D) of a solenoid goes to zero, the first turn is superimposed upon the last, and the 
self-capacitance due to end-effects must go to infinity.  That certainly is where the data for short 
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coils are heading, and we should look for a first order dependence on ℓ/D which satisfies that 
condition. 
     So now we might imagine a virtual electrode structure which will allow us to model the 
difference between the perturbed and the un-perturbed field as a static capacitance.  This is just 
something to account for the distribution of electric field lines extending from one end of the coil to 
the other when the un-perturbed field is taken away.  Such an origin suggests that it will not look 
like the capacitance between the two ends when the middle of the coil is removed; because it is 
doubtful that phenomena related to external impedance (and concerning fields which extend some 
distance from the coil) will be greatly affected by the diameter of the wire. 
     It turns out that if we try to model the capacitance perturbation as being due to a set of plates, 
then the resulting curve does not fit the data.  Beyond that however, there are various possibilities, 
one of which is:
CL = CTL + kFP ε0 π² D / Arccosh(1 + ℓ/D)                    . . . . . . . . . (9.3)

This curve is shown below for kFP = 0.2308; with CTL (9.2) on its own and the DAE formula for 
comparison (all quantities in units of coil diameter).

The fit is not perfect, but bear in mind that the DAE formula involves assumptions and has a 
standard deviation of fit of 2.1%.  The weighted square error sum comparison between the formula 
above and DAE indicates that the the two curves are statistically indistinguishable; i.e., given some 
physically reasonable way of removing the effect of the coil-former dielectric, (9.3) should fit 
Medhurst's data just as well as the DAE formula (see spreadsheet, CL_dynamic.ods, sheet 2).
     Another formula, which give an even better fit is:
CL = CTL + 4 ε0 D / ln(1 + π² ℓ/D)                             . . . . . . . . . (9.4)



29

Author's note
Despite having known about the difference between jig measurements and scattering measurements 
for some time, it had nevertheless not occurred to me to try to analyse my own measurement results 
in a way which deviates strongly from standard practice.  Equation (9.1) is a recent invention which 
results from much thinking about the anomaly and the assumptions which might hold-up when 
trying to account for the fringing electric field. Now I am prompted to re-analyse a lot of old data 
and see if the parameters required to reconcile jig and scattering measurements are realistic.  That 
will take some time.

>>>>   To be continued . . . . . . .

10. Transmission line theory

Z =
R0[ Za + jR0 Tan(2π ℓTL / λ) ] 

[R0 + jZa Tan(2π ℓTL / λ) ]

99. Discussion

Remaining problems:
1) To predict the exact high-frequency limiting phase velocity for helical propagation.
2) To quantify those cases when the velocity factor has not quite reached the limiting value at the 
SRF, i.e., when the turns are closely spaced.
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